1. Выбор модели временного ряда по компромиссу «точность-надежность»

1

Анализ точности

Заранее выбран класс функций для оценки трендов временного ряда X(t)степенные полиномы. Задан диапазон I=1-4.

$$X_{t} = P_{l}(t) + \delta_{lt} = \sum_{i=0}^{l} a_{i} t^{i} + \delta_{lt}$$
, где I, a_{i} - неизвестны. (1)

Полином порядка I - $P_I(t)$ выбирается как наиболее точный из допустимых по надежности. Основа процедуры подбора — сопоставление различных функций — полиномов PI(t) порядка I по степени их близости к ряду наблюдений. Критерий точности - $S^2(I)$ -минимум среднего квадрата невязок для каждого I, принадлежащего [1,N-2] (в рамках заданного диапазона I этот показатель медленно убывающая функция от I). Но с ростом I, несмотря на увеличение точности, уменьшается статистическая надежность оценок полиномов, измеренная с помощью коэффициента вариации. Поэтому принятие решения о "наилучшем" полиноме порядка I=k - разрешение компромисса "точность -надежность".

1. Решение задачи минимизации S^2 для I=1,2,3,4.

Система нормальных уравнений имеет следующий вид:

```
722666a₄
                   44100a<sub>3</sub>
                               + 2870a<sub>2</sub>
                                             20a₀
                                                                        =641,7
                                              + 2870a₁ +
                   722666a<sub>3</sub> + 44100a<sub>2</sub>
 12333300a<sub>3</sub> +
                                                                210 a_0
                                                                        =8499.9
216455810a_3 + 12333300a_3 + 722666a_2 + 44100a_1 +
                                                               2870a₀
                                                                        =130137.7
3877286700a_3 + 216455810a_3 + 12333300a_2 + 722666a_1 + 44100a_0 = 2136701.1
70540730666a_3 + 3877286700a_3 + 216455810a_2 + 12333300a_1 + 722666a_0 = 36584637.7
```

В результате ее решения получены следующие оценки коэффициентов а:

	l=1	l=2	I=3	l=4
a0	4,263	8,871	7,967	10,875
a1	2,650	1,393	1,854	-0,421
a2		0,06	0,0062	0,467
a3			0,0017	-0,032
a4				$7,983*10^{-4}$

Далее для каждого полинома $P_1(t)$, $P_2(t)$, $P_3(t)$ были получены показатели точности:

$$S^{2}(1)$$
 =3,950
 $S^{2}(2)$ =0,756
 $S^{2}(3)$ =0,696
 $S^{2}(4)$ =0,595

где
$$S^2(l) = \frac{1}{20} \min_{a_l} \sum_{t=1}^{20} [X(t) - P_l(t)]^2$$
, I=1,2,3,4

 S^2 падает - точность растет по мере роста порядка полинома.

2. На втором этапе необходимо провести проверку на автокорреляцию случайных остатков δ_{lt} уравнения (1). Модель временного ряда, построенная с помощью полинома порядка I признается допустимой, если случайные составляющие δ_{lt} представляют собой белый шум. В этом случае, по теореме Гаусса-Маркова, оценки a_i , полученные из регрессионной модели (1) по методу МНК будут несмещенными и эффективными.

Проверка на автокорреляцию может быть проведена, например, с помощью теста Дарбина-Уотсона. В данной задаче для каждого из разбиений временного ряда на детерминированную (полином $P_I(t)$, I=1,2,3,4) и случайную ($\delta_I(t)$, I=1,2,3,4) составляющие (см. таблицу).

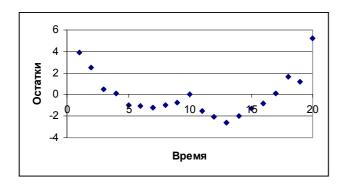
t	X _t	P ₁ (t)	$\delta_1(t)$	P ₂ (t)	$\delta_2(t)$	P ₃ (t)	$\delta_3(t)$	P ₄ (t)	$\delta_4(t)$
1	10.8	6.91286	3.88714	10.32422	0.47578	9.82934	0.97066	10.89080	-0.09080
2	12.1	9.56256	2.53744	11.89665	0.20335	11.71432	0.38568	11.65977	0.44023
3	12.7	12.21226	0.48774	13.58877	-0.88877	13.63218	-0.93218	13.01866	-0.31866
4	15	14.86195	0.13805	15.40059	-0.40059	15.59313	-0.59313	14.82336	0.17664
5	16.5	17.51165	-1.01165	17.33211	-0.83211	17.60738	-1.10738	16.94894	-0.44894
6	19.1	20.16135	-1.06135	19.38332	-0.28332	19.68515	-0.58515	19.28960	-0.18960
7	21.6	22.81105	-1.21105	21.55423	0.04577	21.83666	-0.23666	21.75872	-0.15872
8	24.5	25.46075	-0.96075	23.84484	0.65516	24.07211	0.42789	24.28884	0.21116
9	27.4	28.11045	-0.71045	26.25515	1.14485	26.40172	0.99828	26.83165	0.56835
10	30.8	30.76015	0.03985	28.78515	2.01485	28.83571	1.96429	29.35800	1.44200
11	31.9	33.40985	-1.50985	31.43485	0.46515	31.38429	0.51571	31.85791	0.04209
12	34	36.05955	-2.05955	34.20425	-0.20425	34.05767	-0.05767	34.34055	-0.34055
13	36.1	38.70925	-2.60925	37.09334	-0.99334	36.86607	-0.76607	36.83425	-0.73425
14	39.4	41.35895	-1.95895	40.10213	-0.70213	39.8197	-0.4197	39.38649	0.01351
15	42.7	44.00865	-1.30865	43.23062	-0.53062	42.92878	-0.22878	42.06394	0.63606
16	45.8	46.65835	-0.85835	46.4788	-0.6788	46.20353	-0.40353	44.95239	0.84761
17	49.4	49.30805	0.09195	49.84668	-0.44668	49.65414	-0.25414	48.15681	1.24319
18	53.6	51.95774	1.64226	53.33426	0.26574	53.29085	0.30915	5 1.80134	1.79866
19	55.8	54.60744	1.19256	56.94153	-1.14153	57.12386	-1.32386	56.02925	-0.22925
20	62.5	57.25714	5.24286	60.66851	1.83149	61.16339	1.33661	61.00300	1.49700

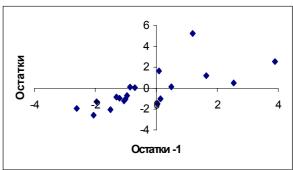
были рассчитаны коэффициенты автокорреляции: $r_1(I) = 0.717$, $r_1(2) = 0.313$, $r_1(3) = 0.289$, $r_1(4) = 0.266$

Близость r_1 к 1 свидетельствует о наличии линейного тренда в остатках. При I=1 коэффициент автокорреляции "плохой", но условно принято предположение о допустимости $P_1(t)$, $P_2(t)$, $P_3(t)$.

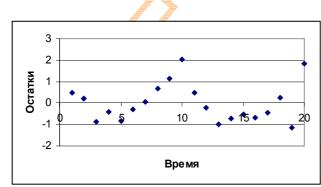
Графический анализ остатков

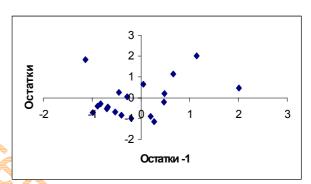
I = 1



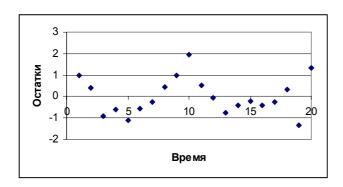


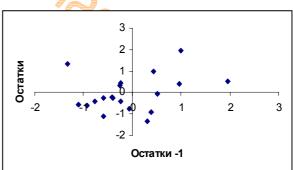
I = 2



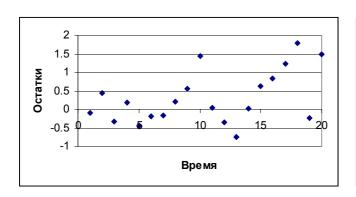


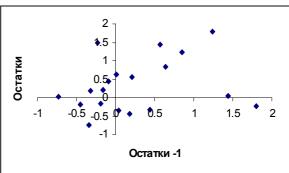
I = 3





I = 4





Анализ надежности

Для анализа надежности полиномов были вычислены оценки дисперсии $\sigma_{\delta}^2(I)$ случайных составляющих δ_{lt} .

$$\sigma_{\delta}^{2}(l) = \frac{S^{2}(l)20}{20-l-1}$$
, I=1,2,3,4

$$\sigma_{\delta}^{2}(1) = 4,388, \ \sigma_{\delta}^{2}(2) = 0,894, \ \sigma_{\delta}^{2}(3) = 0,870, \ \sigma_{\delta}^{2}(4) = 0,793$$

Дисперсии оценок параметров \hat{a}_{i} полиномов $P_1(t)$, $P_2(t)$, $P_3(t)$, $P_4(t)$

$$\sigma_i^2(l) = a^{ii}(l) \cdot \sigma_{\delta}^2(l), i = 0,1,...,l, l=4,$$

где aⁱⁱ(I) - i ый диагональный элемент обратной матрицы соответствующей системы нормальных уравнений, который может быть вычислен независимо от значений X(t) в силу свойств регрессий в виде степенных функций от t.

Из таблицы СКО видно, что дисперсии оценок убывают по мере роста их номера і, таким образом, абсолютная надежность увеличивается, но более важен показатель относительной надежности старшего коэффициента полинома -коэффициент вариации:

$$Bi(I) = \frac{\sigma_i(l)}{|\hat{a}_{ii}|} < b$$
 =0,3 – (ограничение в соответствии с личными предпочтениями)

Таблица Bi(I)

Данному критерию соответствуют полиномы первого и второго порядков, они будут допустимыми с точки зрения надежности, однако из них полином $P_2(t)$ является более точным. Следовательно, k=2.

Прогноз на 23 период

$$P_2(23) = 8.871 + 1.393 * 23 + 0.06 * 23^2 = 72.65$$